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ABSTRACT
Motivation: The accumulation of genomic alterations is an important
process in tumor formation and progression. Comparative genomic
hybridization performed on cDNA arrays (cDNA aCGH) is a com-
mon method to investigate the genomic alterations on a genome-wide
scale. However, when detecting low-level DNA copy number changes
this technology requires the use of noise reduction strategies due to
a low signal to noise ratio.
Results: Currently a running average smoothing filter is the most
frequently used noise reduction strategy. We analyzed this strategy
theoretically and experimentally and found that it is not sensitive to
very low level genomic alterations. The presence of systematic errors
in the data is one of the main reasons for this failure. We developed a
novel algorithm which efficiently reduces systematic noise and allows
for the detection of low-level genomic alterations. The algorithm is
based on comparison of the biological relevant data to data from so-
called self–self hybridizations, additional experiments which contain
no biological information but contain systematic errors. We find that
with our algorithm the effective resolution for ±1 DNA copy number
changes is about 2 Mb. For copy number changes larger than three
the effective resolution is on the level of single genes.
Contact: bilkes@mail.nih.gov

1 INTRODUCTION
Genomic alterations, such as gains or losses of specific DNA regions
are frequently observed in tumors (Lengauer et al., 1998). The size
of the affected regions can range between a few base-pairs (bp) to
several mega-bp and may even cover whole chromosomes. Cancers
of different diagnostic types have characteristic genomic alteration
profiles (Lengauer et al., 1998), and some are predictive of aggres-
sive behavior. Therefore, considerable efforts have been taken to map
these genomic alterations for specific cancers in order to identify the
genes responsible for the aggressive phenotype.

Metaphase comparative genomic hybridization (mCGH) was one
of the first methods used to investigate DNA copy number changes
which we refer to as ‘genomic alteration’ in this publication. Unfor-
tunately, mCGH has several limitations including a relatively low
spatial resolution (on the order of 10–20 Mb) and low sensiti-
vity. The emerging methods of array-based comparative genomic
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hybridization (aCGH), which utilizes the BAC and cDNA micro-
array technologies, have overcome (Pinkel et al., 1998; Pollack et al.,
1999) some of the problems associated with mCGH. When compar-
ing sensitivities it has been demonstrated that BAC aCGH is more
sensitive in detecting genomic alterations because of the larger length
of BAC clones. However, the cDNA aCGH methodology has its own
advantages. It has been successfully utilized to detect amplifications
on the level of single genes. Because cDNA arrays can be used to
measure DNA copy number as well as the transcript level, these
arrays have also been successfully used to investigate the impact
of gene dosage on the transcriptome (Hyman et al., 2002; Pollack
et al., 2002). Many applications of cDNA based aCGH have focused
on amplifications, where typically more than 10 extra copies of DNA
are gained. However, low level DNA gains and losses are difficult
to detect (Beheshti et al., 2003; Hyman et al., 2002) due to a lower
signal to noise ratio. To increase the sensitivity for lower level DNA
copy number changes, a ‘running average’ (RA) smoothing filter has
been used as a noise reduction strategy (Hyman et al., 2002; Pollack
et al., 2002). To our knowledge a systematic analysis of the sensit-
ivity of cDNA-based array CGH has not been done. In our analysis
we found that a significant part of the noise in cDNA aCGH data
is of a systematic origin. However, the RA noise reduction strategy
cannot effectively reduce this bias and therefore may lead to a low
statistical significance. We have developed a novel algorithm which
we named ‘topological statistics’. This algorithm reduces systematic
as well as statistical noise and allows the detection of low level DNA
copy number changes with cDNA microarrays.

2 MATERIAL AND METHODS

2.1 Running average
The RA smoothing filter is a commonly used strategy for the reduction of
stochastic noise. A basic assumption of this method is that the noise is inde-
pendently and equally distributed over the individual probes of the cDNA
array. In addition, it is assumed that the noise approximately follows a normal
distribution. The measured relative intensity D(x) for a probe at a genomic
location x is therefore modeled as a linear combination of Gaussian noise
N(0, σ) with variance σ and the ‘true’ relative DNA copy number Sj (x)

multiplied by a response coefficient �:

Dj (x) = �Sj (x) + N(0, σ).

If the noise level σ is small compared to the signal �S it is suffi-
cient to use a threshold � to define chromosomal gains by restricting
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�S > �.1 The choice of the threshold � implicitly affects the false dis-
covery rate α and false negative rate β. The complementary error function
erfc(x) of the threshold, measured in units of variance, provides an estimate
of these values,

α = erfc

(
�√
2σ

)
, β = erfc

(
�S − �√

2σ

)
. (1)

In cDNA aCGH data one often finds a signal to noise ratio �/σ ≈ 1.
For ‘raw’ data the cutoff-approach provides sufficient levels of significance
only for relatively strong signals. For example, amplifications with typically
S � 10, can safely be detected. The detection of lower level gains and losses,
however, requires the use of noise reduction strategies. The RA uses the fact
that genomic alterations typically stretch over several neighboring sites. The
true signal S(x′) is constant within some region x′ ∈ R. Therefore averaging
over a window of size W

D′
j (x) = 1

W

W/2∑
i=−W/2

Dj (x + i)

reduces statistical noise if the whole window lies within R:

σr (W) = σ√
W

. (2)

The improvement of the signal to noise ratio is traded here for the loss of
resolution: genomic alterations much smaller than the window-size W cannot
be detected. Furthermore, the boundaries of altered regions are blurred as
well. Therefore, one wants to choose W as small as possible but large enough
to ensure the desired level of statistical significance parametrized by α and β.
Combining equations (1) and (2), the smallest window size providing this
significance level is given by

W =
[

(a + b)σ

�S

]2

, a = √
2erfc−1(α),

b = √
2erfc−1(β). (3)

If the size R of an altered region is smaller than the window size, the
smoothened amplitude D′ eventually falls below the detection threshold �.
We define the size, where the expectation value of the smoothened amplitude
equals the threshold �,

Rstruc = W
a

a + b
, (4)

as the structural resolution. This is the minimal extension of a genomic alter-
ation that can be detected at 50% of the chromosomal locations. Another
resolution parameter of interest is the number of effectively independent
measurements. It is obvious that the RA procedure strongly correlates the
signal at adjacent sites. A measure of the minimal distance between effect-
ively uncorrelated sites is given by the integrated autocorrelation time (Sokal,
1996),

τint = 1

2
+

∞∑
t=1

∑
x(D′(x + t) − D′)(D′(x) − D′)∑

x(D′(x) − D′)2
,

where D′ is the average of D′(x) for all x. If the DNA copy number is constant
in the range of summation one finds τint = W/2 for data smoothened by RA
with window size W . The effective number Ñ of independent probes on the
cDNA array which cover N genomic locations is therefore given by

Neff = 2N

W
. (5)

2.2 Topological statistics
The application of the RA algorithm discussed in the previous section is
based on several assumptions. Some of those assumptions are not met, more

1The discussion for losses is straightforward and is left out for the sake of
simplicity in what follows. For the same reason assume that the data was
log-transformed, such that <R> = 0 for the regular DNA copy number.

Fig. 1. Topological statistics: the distribution of observations in a sliding
window of size W is compared to the distribution of normal data (copy
number ratio 1) in a window at the same genomic location. Data from differ-
ent reference datasets can be combined by considering the joint distribution.
P -values for different distribution averages are assigned to the center of the
sliding window.

specifically that the noise is randomly distributed and that the variance is
approximately constant on the whole genome. Our algorithm (Fig. 1) reduces
this type of errors. Like the RA, it uses a sliding window to reduce statistical
noise by combining multiple observations into one estimator. The difference
to the RA is that this estimator is then compared to a null-distribution repres-
enting the unchanged DNA configuration. This distribution is obtained from
a ‘neutral’ dataset, a measurement of a self–self hybridization experiment.
In this type of experiments a single DNA sample is split into two groups,
each of which is labeled with one of the two fluorescent markers respectively.
Then the two groups are merged and hybridized onto one cDNA array. Nat-
urally this experiment contains no biological data, but the systematic errors
are similar to what is present in the measurements for biological samples.
By comparing the two distributions a potential bias cancels out and ideally
has no impact on the estimate. In order to increase the statistical significance
several self–self hybridizations can be combined into one common distri-
bution. Different from the RA, which makes a ‘hard’ assignment to either
state ‘normal’ or ‘altered’, this algorithm provides a probabilistic estimate
for the presence of genomic alterations and assigns a p-value to the center of
the sliding window. In this paper we use mainly a t-test for the comparison
of the two distributions, but the method is not limited to this statistics. For
example we use also a Kolmogorov Smirnov test, which is independent of
the normality assumption of the t-test. Most statistical tests do also take the
noise level for the specific window location into account, thus reducing the
impact of the inhomogeneous noise distribution.

2.3 Recurrent region
Recurrent genomic alterations, within the same disease, may play a role in
tumorigenesis. It is hence possible that the genes encoded in these regions
provide an advantage for the tumor cells when their copy number is changed.
The identification of such regions is therefore highly relevant, and also the
genes found in these regions may provide insights into the biology of the
tumor and may constitute drugable genes.

Formally, a region is called ‘recurrent’ if the frequency,

ν = # samples with genomic changes

# samples
= C

S
, (6)

of its occurrence among tumor samples exceeds a certain threshold. When
estimating this frequency, the noise present in the samples propagates to ν.
In cases where the individual samples provide only weak significance for the
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presence of genomic alterations, a direct application of Equation (6) may
lead to a systematic underestimation of ν due to an accumulation of type
II errors. This effect can be reduced by considering the individual samples
as ‘repeated’ measures of the same noisy variable ‘presence of a recurrent
genomic alteration’. Repeated observations, which individually may be only
marginally significant can, as a whole, be highly significant. The average
P -value

P̄ = 1

S

S∑
i=1

Pi ∝ 1 − ν, (7)

combinesS measurements into one estimator with a higher statistical power. If
the null-hypothesis is true for all samples, the Pi are drawn from a flat random
distribution and the expectation value is <P̄> = 0.5. By virtue of the central
limit theorem, in the absence of genomic alterations, the average of these
P -values follows a normal distribution centered around 0.5 with variance
σ ∝ 1/

√
S. It follows that for a fixed significance level α the threshold γ for

which the combined observation P̄ < γ = 0.5−ασ can be called significant,
increases with the number of samples.

When analyzing recurrent alterations, which are differentially affected in,
for example, different stages of the disease, the frequency ν is of direct
interest. Equation (7) states that P̄ is an approximate estimator of ν. This can
be seen as follows: The expectation value for a sample without a genomic
alteration is <Pρ> = 0.5, while for (marginally) significant samples it is
<Pσ > ≈ 0. Therefore the expectation value <P̄S,C> for a set of S samples
with C genomic changes is approximately

<P̄S,C> = 1

S

(
C <Pσ > + (S − C)<Pρ>

)

≈0.5
S − C

S
= 0.5(1 − ν), (8)

proportional to the frequency ν.

2.4 Visualization
The visualization of the probabilities for gains and losses provided by topo-
logical statistics uses the frequently used color scheme. Red colors indicate
a gain, while green indicates a loss at that location. The intensity

I ∝




0, if P > 0.05,

− log(1/N) + log(0.05), if P ≤ 1/N ,

− log(P ) + log(0.05), otherwise,

(9)

is proportional to the logarithm of the P -value. Points which are above a
threshold P > 0.05 are shown in black. The P -values visualized in this way
are not adjusted for multiple comparison, because we are asking for a genomic
alteration at this specific site. A Bonferroni correction for multiple compar-
ison is, however, built into the heat-map: the brightest intensity is clipped
at P = 1/Neff , where Neff is the number of effectively independent clones
[Equation (5)]. Consequently, if the numerically generated P -values per-
fectly followed the theoretical distribution expected for the null-hypothesis,
one false positive finding with highest intensity is expected per array.

2.5 Data generation
2.5.1 Cell lines and genomic DNA We used four neuroblastoma
cell lines in this study. The conditions for cell cultures were done as
described previously (Khan et al., 2001). High molecular weight genomic
DNA was extracted from interphase of a Trizol preparation for RNA extrac-
tion according to the manufacturer’s instructions (Invitrogen, Gaithersburg,
MD). Genomic DNA was treated with RNase A and protease (Qiagen,
Valencia, CA), and purified by phenol/chloroform extraction followed by
ethanol precipitation. We obtained normal genomic DNA samples (male,
female or 1:1 mixture of male and female) from Promega, and genomic DNA
samples containing the different numbers of X chromosomes (XXX, XXXX
and XXXXX) from the NIGMS (http://www.locus.umdnj.edu/nigms/).

2.5.2 Microarray experiments Preparation of glass cDNA micro-
arrays was performed according to a previously published protocol

(Khan et al., 2002). Image analysis was performed using DeArray soft-
ware (Chen et al., 1997). The cDNA library containing 42,000 clones was
obtained from Research Genetics (Huntsville, AL) and clones were prin-
ted on two microscope glass slides as a set. Approximately 50% of the
cDNAs on the microarrays were either known genes or similar to known
genes in other organisms, whereas the remainder were anonymous ESTs.
For aCGH experiments on cDNA microarrays, 20 µg of genomic DNA
from neuroblastoma tumor or cell line samples were sonicated and puri-
fied with QIAquick PCR purification column (Qiagen, Valencia, CA). Three
micrograms of sonicated DNA were labeled with aminoallyl-dUTP (Sigma)
in a 25-µl reaction, including random hexamer (0.24 µg/µl, Roche), dATP,
dCTP and dGTP (125 µM each), dTTP (25 µM), aminoallyl-dUTP (100 µM)
and high concentration of Klenow fragment (2.5 U/µl, NEB). The labeling
reaction was purified with QIAquick PCR purification column. Cy3 and Cy5
dyes were coupled to the reference DNA (1:1 mixture of normal male and
female DNA) and sample DNA respectively. Cy3- and Cy5-labeled probes
were then combined along with human Cot-1 DNA (50 µg, Invitrogen) and
yeast tRNA (100 µg, Invitrogen). The mixture was concentrated and re-
suspended in 32 µl of hybridization buffer (50% formamide, 10% dextran
sulfate, 4×SSC and 2% SDS). The hybridization mix was first heated at 75◦C
for 10 min, then at 37◦C for 1 h, and finally loaded to the pre-hybridized array.
The hybridization was performed at 37◦C overnight. The washing procedure
was performed as described previously (Khan et al., 2001).

2.5.3 Data analysis Fluorescence ratios were normalized for each
microarray by setting the average log ratio for each sub-array elements equal
to zero (commonly referred to as ‘pin-normalization’). The data was quality-
filtered by removing those clones that had poor quality measurement (Chen
et al., 1997) (quality <0.5) in more than 20% of all the samples. For the
clones that passed this filter, the fluorescence ratio of low quality spot for the
individual sample was replaced by the average ratio value of the remaining
good measurements for that clone. The clones were then assigned to Uni-
Gene Cluster (April 2004). For the UniGene clusters represented by multiple
clones, mean fluorescence ratios of those clones are used. After these pro-
cesses we had 21 256 unique UniGene clusters remaining from the initial
42 591 clones. Map positions for the cluster were assigned by Blat searches
against the ‘Golden Path’ genome assembly (http://www.genome.ucsc.edu/;
July, 2003 Freeze). Throughout this publication, all genomic coordinates are
given with respect to this assembly. Finally the clusters were sorted according
to their starting position of sequence on each individual chromosome.

3 RESULTS

3.1 Running average
To test the sensitivity and resolution of cDNA aCGH to detect single
copy number changes, we performed aCGH with DNA from cell
lines containing different numbers of X chromosomes (1–5 copies)
(Pollack et al., 1999) and compared them to a sample with two copies
of X chromosomes. The autosomal chromosomes are normal for all
these cell lines.

The observed mean fluorescence ratio of all clones across the
X chromosome was calculated and is shown in Figure 2. The rel-
atively large variance σ ≈ 0.12 and the small response coefficient
(regression slope) � = 0.25 make it difficult to detect the low level
of DNA copy number changes. We used these numbers as estim-
ates for the parameters in our theoretical analysis; with Equation (3)
the minimal window size required to achieve reasonable statistical
significance can be estimated (Table 1). We verified if the expected
statistical significance is approximately observed when applying the
RA with this window size W . The threshold was set to � = 1/2∗�S,
which together with W was chosen such that the expected false pos-
itive rate is α = 0.05 and the false negative rate β = 0.05. Next
we measured numerically the empirical false positive/negative rates.
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Fig. 2. The number of X-chromosomes divided by two is plotted against the
average ratio observed in our CGH experiment. The error bars indicate the
standard deviation in the data. The slope of the regression line is � = 0.25.

Table 1. Summary of the theoretical and numerical analysis of RA noise
reduction

S C log2 �S σ W α∗
RA β∗

RA α∗
TS β∗

TS

0.5 1 −0.13 0.23 50 0.28 0.10 0.03 0.05
1.5 3 0.14 0.18 27 0.24 0.07 0.04 0.01
2.0 4 0.28 0.21 9 0.10 0.04 0.05 0.02
2.5 5 0.47 0.23 4 0.30 0.10 0.06 0.07
3.0 6 0.59+ 0.21+ 2 — — —

Requiring, without adjustment for multiple comparison, significance levels α = 0.05
and β = 0.05, the minimal window size W [Equation (3)] required to detect gain
(losses) with copy number ratio S (copy number C for diploid cells) is estimated with
the overfed standard deviation σ . The false positive/negative rates α∗

RA, β∗
RA observed

with this window size and the threshold � = 0.5�S is listed. The values α∗
TS, β∗

TS were
the corresponding rates obtained from TS with p < 0.05. Parameters marked with +
were estimated by extrapolation of �S and using the average standard deviation of the
observations.

The empirical false positive rate was estimated from the data of the
autosome, where the copy number ratio is strictly equal to 1 in our
benchmark. Conversely, the false negative rate was estimated from
the X-chromosome data, where the true DNA copy number ratio
is different from 1. Every observation a that satisfied a > � or
a < −� was considered as a false positive in the autosome or on the
X-chromosome a true positive gain or loss, respectively. We found
that the observed false positive/negative rates were much higher than
expected. While it was possible to increase the window size and
change the cutoff � such that the 0.05 levels for the two rates was
observed, the required window sizes were too large to get a reas-
onable resolution. For example we found empirically Wmin = 200
for the 1-copy loss. A window of that size covers almost 1/3 of the
entire X-chromosome.

3.2 Pathologies in cDNA array based CGH data
The RA strategy turns out to be much less efficient in detecting
low-level gains and losses than anticipated by the theoretical analysis.

The poor performance may be caused by the fact that some
of the implicit assumptions of the RA strategy are not met to
varying degrees. That is, the RA assumes that the noise in the
data is identically and independently normally distributed. Non-
normality is frequently observed in this type of data. Variance
stabilizing transformations like the log-transform or generalized
transformations (for two color microarrays, see for example, Rocke
and Durbin, 2003) can improve this situation. In our log-transformed
benchmark data most of the deviations from the normal distribution
are in the low-ratio tail of the distribution (data not shown).The
second assumption of an identical distribution is not met because
the noise level strongly depends on the signal intensity. For example
the noise level was found to be 50% higher in the region with a one-
copy loss, the X-chromosome for male DNA, as compared to the
autosome with two copies. But even in the autosome, with a constant
DNA copy number, we observed a varying noise amplitude, which
correlated with the GC content of the corresponding genomic region.
The most basic assumption, namely that the noise follows a
random distribution, is also not met. Systematic errors have been
observed (Workman et al., 2002; Yang et al., 2002a) in microarray
data and have also been linked to effects introduced in the commonly
used DNA amplification protocol (Wilson et al., 2004). Furthermore
cross-hybridization (Handley et al., 2004) is one source of system-
atic errors. For cDNA aCGH we found that the systematic bias is the
biggest problem for the detection of low level genomic alterations.
The scatter plot in Figure 3 demonstrates the non-randomness for
two of our self–self hybridizations. This type of data does not by
definition contain any biological information and should not con-
tain any reproducible patterns. Therefore the observations should be
uncorrelated and the points in the scatter plot should be distributed
approximately spherically, given that the noise level in both meas-
urements are similar. Instead we observed an ellipsoid with very
different lengths of the two half-axes. The arrows in the diagram point
to the direction of the eigenvectors (principal components) of the cor-
relation matrix, and the length reflects the fraction of the variance
explained by this component. The larger vector, which points in the
direction of reproducible noise, accounts for 83% of the variability.
In other words, the major fraction of the noise in the self–self hybrid-
izations is of systematic origin. The reproducibility of the noise in
the data alone does not fully explain why the noise scales so poorly in
the RA smoothing filter. As long as the noise for the different meas-
urements within a window is quasi-random, the scaling should be
fine. However, we found that the low-frequency changes in the bias
correlate with the low-frequency changes of the GC content on the
genome. The correlation coefficient between the average GC content
within a window including 200 cDNA spots and the average of the
corresponding DNA copy number measurements in this window was
<ρ> = 0.6. This indicates that the bias depends on the location of
the genome, ultimately causing the poor scaling of the noise.

The third assumption, independence of the noise, is also viol-
ated: the systematic error at some chromosomal location should
not depend on the signal at a different chromosomal location. In
Figure 4 the distribution of correlation coefficients of the data with
the true number 
 of the X-chromosomes is plotted. Almost all the
probes on the X-chromosome are strongly correlated, as expected.
The average correlation coefficient is <rX> = 0.77. However, we
also found a significant number of genes correlated with 
 in the
autosome. Due to the small number of degrees of freedom (N = 5
measurements per gene) a relatively broad distribution of correlation
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Fig. 3. Scatter plot comparing log-transformed expression ratios for two
self–self hybridizations. The arrows point in the direction of the two prin-
cipal components, and their lengths reflect the respective eigenvalues of the
correlation matrix. The largest principal component points in the diagonal
direction, indicative of strong systematic errors. The ellipsoid determined by
the principal components covers 66% of the observations.
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Fig. 4. The distribution of the correlation coefficients between the observed
DNA copy number ratio and the true copy number of the X-chromosome.
The solid line connects the frequency observations to guide the eye. The
dashed line reflects the theoretical distribution (Press et al., 1992), Student’s
t-distribution with N − 2 degrees of freedom and t = r

√
(N − 2)/(1 − r2).

It represents the null-hypothesis that genes in the autosome do not respond
to changes of the DNA copy number of the X-chromosome.

coefficients centered around r = 0 is expected. A few ‘strongly’
(anti)-correlated genes are expected by random chance. However we
observed significantly more positively correlated genes than expec-
ted. This observation is reflected in the positive average correlation
coefficient <rA> = 0.10 and the ‘bump’ in the distribution around

r = +0.5. The distribution expected theoretically is also shown in the
same plot. The left part of the scaled distribution nicely fits the obser-
vation, while for positive coefficients we found considerably more
correlated genes than expected. This result indicates that genes in the
autosome respond to changes of the signal on the X-chromosome. A
possible explanation for this behavior is cross-hybridization which
was recently linked to unspecific binding of the poly(dT) in ESTs
used for printing of microarrays (Handley et al., 2004). Alternatively
our observation can be explained by errors in the clone annotation
like the assignment to UniGene clusters.

3.3 Topological statistics
We developed a novel algorithm, topological statistics, to deal with
the issues described above. The performance of this algorithm was
tested on the same dataset as RA with equivalent parameters. A
t-test was used for the comparison of the null-distribution N with
the actual observations D. This test calculates, like the RA, the aver-
age of the observations N , D within the sliding window. Therefore
the statistical noise scales similar to Equation (2). Consequently
Equations (3)–(5), which estimate the required window size and
the number of effectively uncorrelated clones, remain valid. We
chose the same window size W used for RA benchmark for the
numerical estimation of the false positive/negative rates α∗

TS and β∗
TS.

A region was considered a ‘genomic alteration’ if the estimated
P -value p < α = 0.05, equivalent to the thresholds used in the RA
benchmark. The observed false rates α∗

TS, β∗
TS are shown in Table 1.

The results indicate that the noise is effectively reduced. Interest-
ingly we found that the observed rates α∗

TS, β∗
TS are slightly better

than expected for very low levels ±1 copy number changes. We con-
cluded that it is possible to identify low levels of genomic alterations
when topological statistics is used to improve the signal to noise ratio.
Topological statistics was designed to reduce the pathologies found
in cDNA aCGH data, but it cannot reduce the noise introduced by
cross-hybridization induced by genomic alterations elsewhere (here:
in the X-chromosome) in the genome. This may explain why the
observed rates α∗

TS, β∗
TS are larger than expected for the high level of

DNA copy number changes.
As described earlier, a potentially present bias in the data is com-

pensated in our algorithm by comparing data to a ‘null-distribution’
with the same bias, which therefore cancels out. To test the import-
ance of this aspect of our algorithm we replaced the null-distribution
N with random data drawn from a normal distribution with the
same homogeneous variance. A major increase of the false discov-
ery rate with this setup indicated that the reduction of systematic
errors is a major aspect of our algorithm. For example, in the one-
X-chromosome copy data the false positive rate increased to α∗

∅ =
0.17. This is significantly larger than the α∗

TS = 0.03 when the self–
self hybridization data was used for comparison. The observed α∗

∅ is
still smaller than the α∗

RA = 0.28 found for the RA noise reduction.
For all other copy number of the X-chromosome we found similar
results. We attribute this to the fact that our algorithm still takes into
account the non-homogeneous variance in the data, even when the
background distribution N does not contain the information about
systematic errors.

The other two artifacts, non-normality and the non-identical dis-
tribution, are also reduced, even though they turn out to be of less
importance. The inhomogeneity variance is taken into account by
almost all statistical tests one could use for the comparison of N and
D. However, the t-test we chose for this purpose is dependent on the
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assumption of normality, which we found is also not met. We hence
tried to replace the t-test by the Kolmogorov Smirnov test. It turned
out that the lower statistical power of this test over-compensated
the advantage of independence from the normality assumption. We
observed increased α∗ and β∗ rates and therefore still used the t-test
for all other experiments.

3.4 Neuroblastoma data
Neuroblastoma (NB) is one of the most common pediatric solid
tumors, and accounts for 7–10% of all childhood cancers (Brodeur,
2003). The prognosis of patients with NB varies with stage and amp-
lification status of the gene MYCN. Genomic alterations in NB have
been investigated by cytogenetic and molecular methods including
spectral karyotyping and metaphase comparative genomic hybridiza-
tion. The most common genomic alterations observed in NB include
loss of 1p36, gain of 17q and amplification in a neighborhood of
MYCN on 2p25. Other recurrent changes including loss of 3p, 4p,
9p, 11q and 14q, and gains of chromosome 7 and 1q have been
suggested to have relevance to the development and progression
of NB.

As part of a larger study (Chen et al., 2004) we have performed
cDNA aCGH analysis of four neuroblastoma cell lines for which
genomic alterations have been characterized. For example the cell
line SK-N-AS showing loss of DNA on 1p36 bounded by CDC2L1
and NPPA has been reported (Cheng et al., 1995; White et al., 1995).
In Figure 5 we show the output of our algorithm for the entire 1p36
cytoband for this cell line. Our data confirms the loss of DNA in
a region inside the boundaries CDC2L1 and NPPA. For comparison
we also show the RA-smoothened data in the lower part of the figure.
Additional to a much smaller region lost we find gains adjacent to the
proximal boundary NPPA and close to the distal boundary CDC21L1
when relying on RA. These gained regions are not reported in the
literature and we find the same ‘gains’ in self–self hybridizations
(data not shown). We therefore concluded that they are an artifact in
our data, emphasizing that RA is less efficient in removing noise.

In Figure 6 we show a genome-wide analysis for four cell lines
CHP134, IMR5, SMS-KCNR and SK-N-AS for which we found a
characterization of the status for chromosome 17 in the literature.
All cell lines were reported (Morowitz et al., 2003) to have a gain of
17q, which we confirmed with our analysis. We also confirmed the
loss of DNA in 17p for SK-N-AS and the unchanged copy number
for the other three cell lines. For comparison we also show heat-
maps of the data before noise reduction and after application of RA.
While RA increases the ‘contrast’ of the results, we find similar to
the example above in the 1p36 region, several regions with ‘false’
gains or losses of genomic material. The heat-map for the TS filtered
data is relatively clean; however, it contains several red and green
lines spread over the genome. This is probably a reflection of the still
relatively low signal to noise ratio even after removing systematic
errors. The visualization used here does not fully correct for multiple
comparison. For the brightest spots we expect one false positive
line per array; for lower P -values represented by darker lines more
false positives are expected. When considering multiple samples in
order to detect recurrent regions, the increase of statistical power by
the ‘repeats’ can compensate for this lack of statistical certainty. We
demonstrated this in the rightmost panel, which shows the average
P -value for gains and losses for all of the four cell-lines. In this panel
one can see the recurrent loss of the distal arm of 1p and in 11q as
well as the gain on 17q and 1q. The reported lower frequency of

300

Fig. 5. log2 of the P -value for the presence of losses (negative values) or gains
(positive values) estimated with TS for SKNAS (upper panel) in the 1p36
cytoband. The 5% siginficance levels are drawn with dotted lines. The two
vertical lines indicate the location of the genes bounding the region described
as lost (Cheng et al., 1995; White et al., 1995). The lower panel displays
the same data smoothened with RA. The dotted lines indicate the threshold
for 5% significance levels. The data was standardized such that the average
log-ratio for the whole autosomal chromosomes is zero.

the recurrent gain of chromosome 7 (Stallings et al., 2003) is also
visible. However, due to the small number of cell lines used in this
study and the expected low frequency of this gain one finds that the
observed signal is relatively weak.

4 DISCUSSION
Here we have shown that it is possible to detect the lowest ±1 DNA
copy number changes with cDNA aCGH when systematic errors in
the data are sufficiently reduced. We analyzed both theoretically and
experimentally the performance of the RA smoothing filter for cDNA
array CGH data. We find that even under the assumption of ‘well-
behaved’ noise, the minimal required window size needed to detect
±1 DNA copy number changes is larger than the size 5 frequently
used in the literature.

The sensitivity to detect low-level genomic alterations with cDNA
aCGH was tested on a dataset with different numbers of copies of
the X-chromosome and 22 pairs of autosomes. It turned out that the
noise reduction performance of RA was much lower than expected
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Fig. 6. Heat-map of the raw ratio data (RAW), the same data smoothened
with RA and TS, both with window size 27 for four neuroblastoma cell lines
(from left to right): CHP134, IMR5, SMS-KCNR and SK-N-AS. The right-
most panel (Comb) visualizes the average P -value. Chromosomal location
is displayed on the left with the location of the centromere marked in red.

due to systematic errors and other pathologies in the data. This result
implies that it is impossible to detect a low level of copy number
changes (±1) with a reasonable resolution with this algorithm. While
finalizing this manuscript, two algorithms for the analysis of CGH
data were published, mainly focussing on an automatized detec-
tion of breakpoints. The authors (Haupe et al., 2004) report good

performance of their algorithm for signal to noise ratio (SN) larger
than SN ≈ 2.5. This is considerably larger than SN ≈ 1 present in
our cDNA aCGH data for ±1 DNA copy number changes. Unfor-
tunately, for the second algorithm (Jong et al., 2004) no estimates
for the effective resolution and sensitivity of their algorithm was
discussed.

Our analysis of ‘self–self’ data demonstrated the importance of
the systematic errors. The relatively strong correlation <r> = 0.5
between these supposedly uncorrelated datasets as well as the dir-
ection and amplitude of the principal components demonstrate that
the major part of pathologies in the data is of systematic origin.
In a related study (Yang et al., 2002b) self–self hybridization data
was also used to assess the quality of array data. These authors
focused on the level of noise, which they demonstrate is intensity-
dependent. Consequently they suggested that intensity-dependent
thresholds should be used for the detection of differentially expressed
genes. In this study we have additionally demonstrated the presence
of a systematic bias in the data and suggest an algorithm to reduce
these bias’ in CGH data.

In contrast to expression level measurements, the ‘true’ expected
levels in DNA copy number experiments are often known and relat-
ively easy to manipulate. This allowed us to estimate the sensitivity
of the cDNA arrays and establish a benchmark for our algorithm.
We could also directly observe the effect of cross-hybridization.
Topological Statistics reduces this effect if the copy number of the
cross-hybridizing DNA is unchanged because the same signal is
present in the neutral dataset. However, if the DNA copy number
is changed, the additional bias cannot be reduced by TS because this
signal is not present in self–self hybridizations.

We demonstrated that TS reduces effectively both systematic and
random noise. Like the RA, the reduction of statistical noise is per-
formed by combining measurements within a sliding window into
one estimator. The systematic errors are canceled out by comparing
the window-content to observations of a neutral dataset, assuming
that they approximately carry the same systematic errors. The effect-
iveness of TS strongly depends on this assumption; the best results
were obtained when the self–self hybridizations used in the analysis
were generated under similar conditions using the same print-batch.

The statistical significance obtained for the window sizes tested
in this publication was slightly better than expected. For low-
level changes, the statistical significance was sufficient to analyze
small portions of the human genome. For a genome-wide analysis,
the adjustment for multiple comparisons required stricter statistical
thresholds. However, to compensate for these thresholds one may
be forced to use very large window sizes reducing the resolution.
Whole genome screening in high resolution for single copy gains
and losses may be possible when focusing on the biologically relev-
ant recurrent alteration regions. In this context, one naturally has to
analyze multiple tumor samples which can be seen as independent
samples for the presence (or absence) of genomic alterations at a spe-
cific location. The increase of the statistical power as a result of this
‘repetition’ eventually compensates for the adjustment for multiple
comparisons. A possible problem arises from the fact that this pro-
cedure is very sensitive to the assumption that the samples are not
biased. Even though we demonstrated that TS effectively reduces
systematic errors, one cannot fully discount that an observation is
caused by an undetected bias in the data. However, the prediction
of a precise location allows one to use traditional high resolution
methods like quantitative PCR to verify those regions. Without such
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guidance it is, unfortunately, not practical to screen larger portions of
the genome with these methods, due to their ‘low throughput’ nature.

Any sliding window smoothing method correlates measurements.
It therefore reduces the spatial resolution of the microarray, which
depends on the number of independent measurements. For a given
window size, the number of effectively independent probes on the
cDNA chip can be calculated by Equation (3) from the number N ≈
21 000 of unique Unigene Cluster on our chips. With the simplifying
assumption of an approximately homogeneous distribution of these
cDNA clones on the human genome, consisting of approximately
3 Gb, the effective resolution of the array can be estimated. We
demonstrated that one copy DNA changes (c = +1) can be detected
with a window size of order W ≈ 27. In regions encoding genes this
implies roughly a 2 Mb resolution, which is significantly better than
metaphase CGH and even BAC aCGH with a small coverage of BAC
clones. We found that for the higher DNA copy number changes
the required window size decrease quickly. For two copy changes
(�S ≥ 2) the effective resolution is below 1 Mb. For �S > 3
the required window size is 2. At this point the array reaches its
maximum resolution; because of possible outliers it is common to
consider a signal as trustworthy only if it is present in at least two
consecutive probes. In other words, the cDNA aCGH platform can
detect genomic changes at the single gene level (on average 160 kb)
starting from four extra copies. To our knowledge this is among the
highest resolutions of the currently available technologies.
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